Search This Blog

Monday, May 23, 2011

Impact of Sea Lamprey on the Great Lakes

The Correlation Between the Number of Sea Lampreys and Lake Trout in Lake Superior

Sea Lamprey feeding on a native lake trout in Lake Superior.

http://www.glsc.usgs.gov/main.php?content=research_lamprey&title=Invasive%20Fish0&menu=researchinvasive
     Sea lampreys quickly devastated the fish communities of the Great Lakes.  Sea lampreys probably entered Lake Ontario in the 1830s via manmade locks and ship canals. Improvements to the Welland Canal in 1919 allowed sea lampreys to bypass Niagara Falls and enter Lake Erie. After sea lampreys were discovered above Niagara Falls (in Lake Erie in 1921 and Lake Huron in the early 1930s), they spread throughout the upper Great Lakes by 1939. The lake trout was the main predatory species at that time and the sea lamprey’s preferred host. Although early declines in lake trout abundance in the 1940s are suspected to have been caused by overfishing, sea lampreys are believed to be responsible for the very rapid decline in the later 1940s and 1950s. Lake trout actually became extinct in Lakes Ontario, Erie, Huron (except a few inlets of Georgian Bay), and Michigan. Only remnant native stocks remained in Lake Superior. Two factors contributed to the devastating effect of sea lampreys. First, sea lampreys lacked effective predators. Second, the Great Lakes probably have as many miles of tributaries and as many acres of larval habitat as the native range of the sea lamprey along the Atlantic Coast. Host fishes in the Great Lakes are much smaller than those attacked in the Atlantic Ocean and are more likely to be killed by a sea lamprey attack. Between 40% and 60% of lake trout attacked by a sea lamprey will die from loss of blood. These attacks were a major cause of the collapse of lake trout, whitefish, and chub populations in the Great Lakes in the 1940s and 1950s. Lake trout harvests in the U. S. and Canada averaged 15 million pounds per year before the sea lamprey, but declined to record lows within 20 years of the sea lamprey’s appearance.
     Other equally important secondary effects were caused by cascading changes in the fish communities. After the elimination of predators like lake trout, the populations of invasive prey species like the rainbow smelt and alewife increased rapidly in the absence of predation. Those invasive species then out competed native species or preyed on their young. Extinctions of sculpin and deepwater cisco species have been suspected of being linked to extended periods of high abundance of smelt and alewives. The massive annual die offs of alewives that fouled the beaches in Michigan during the 1950s and 1960s were due to overcrowding and poor condition and were a secondary effect of the invasion of the sea lamprey. Alewives also prey heavily on zooplankton. Because zooplankton graze on phytoplankton, the density of phytoplankton increased and the color and clarity of water were affected, particularly in the lower Great Lakes.
     Human activities were affected first through the loss of sport and commercial fisheries across the Great Lakes. Following those losses, came other, equally important economic effects caused by the disappearance of fishery-related jobs and the loss of fishing tourism. With the beaches fouled with dead alewives, there were also losses of tourism associated with beach use.

6 comments: